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Abstract. We consider linear systems arising from the use of the finite element method for
solving a certain class of linear elliptic problems. Our main result is that these linear systems, which
are symmetric and positive semidefinite, are well approximated by symmetric diagonally dominant
matrices. Our framework for defining matrix approximation is support theory. Significant graph
theoretic work has already been developed in the support framework for preconditioners in the
diagonally dominant case, and in particular it is known that such systems can be solved with iterative
methods in nearly linear time. Thus, our approximation result implies that these graph theoretic
techniques can also solve a class of finite element problems in nearly linear time. We show that the
quality of our approximation, which controls the number of iterations in the preconditioned iterative
solver, depends primarily on a mesh quality measure but not on the problem size or shape of the
domain.

1. Introduction. Finite element discretizations of elliptic partial differential
equations (PDEs) give rise to large sparse linear systems of equations. A topic of
great interest is preconditioners for iterative solution of such systems. We focus
on scalar boundary value problems of the form ∇ · (θ∇u) = −f , in which θ is a
scalar conductivity field. See (3.1) below for a more detailed statement of the PDE
under consideration. Such PDEs arise in a variety of physical applications listed in
Section 3. We prove that the stiffness matrix K of this PDE, which is defined precisely
by (3.7) below, can be well approximated by diagonally dominant linear systems.
Since significant theory has been developed for diagonally dominant matrices, our
result shows that the same theory extends to this class of stiffness matrices. In
particular, our approximation result means that the system Kx = f arising from the
finite element method (FEM) can be solved in nearly linear time by preconditioned
iterative methods.

Our analysis uses the support theory framework described in [5] for analyzing
condition numbers and (generalized) eigenvalues for preconditioned systems. Our
analysis is as follows. In Sections 5–7, we state and prove our theorem that K may
be factored as as K = AT D̄1/2HD̄1/2A. A preliminary general-purpose result in
Section 2 shows that a matrix of this form can be approximated by K = AT D̄A (a
diagonally dominant matrix), with the quality of approximation depending on κ(H).
The analysis of κ(H) in Section 7 establishes that this quantity depends on the space
dimension d and degree p of the FEM, the quadrature rule, and various mesh quality
measures but does not depend on the number of nodes or elements or on the shape
of the domain or size of elements. It also does not depend on the conductivity field θ
under certain assumptions to be made below.

The idea of approximating FEM systems by diagonally dominant matrices is not
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new; see for example Gustafsson [13]. In fact, our approach is similar to Gustafsson’s
in that we approximate each element matrix by a diagonally dominant matrix. In
contrast to [13], we are able to rigorously prove bounds on the spectral properties of
our approximation (and thus also the preconditioner).

An approach in [3, §7.3] proposes to precondition general non-diagonally dominant
FEM problems with a diagonally dominant preconditioner obtained by using a lower
order method. Again, our result is a departure from theirs because we get precise and
rigorous bounds on the quality of the approximation.

In Section 10, we specialize the theory to four common cases of the finite element
method and report on computational tests for these cases.

2. Support Theory. Let A,B be symmetric positive semidefinite (SPSD) ma-
trices of the same size, and let N(A) and N(B) denote their null spaces. We define
the support number of A with respect to B to be

σ(A,B) = sup
x∈Rn−N(B)

xTAx
xTBx

. (2.1)

Note that this quantity is finite only if N(B) ⊂ N(A). We follow the convention
established in the previous literature of using σ(•, •) to denote support numbers.
Unfortunately, σ is also commonly used to denote singular values. In this paper, σ
with one argument is a singular value, and σ with two arguments is a support number.

The results in this section can be partially generalized to indefinite symmetric
matrices. This generalization requires a more general definition of support number
than (2.1) and requires the use of the Symmetric Product Support Theorem from [5].
Since this paper focuses on the positive semidefinite case, we omit this generalization.

If A and B are symmetric positive definite (SPD), then σ(A,B) = λmax(A,B), the
largest generalized eigenvalue. When B is a preconditioner for A in the preconditioned
conjugate gradient iterative method [10], the condition number of the preconditioned
system is given by σ(A,B)σ(B,A), which we denote as κ(A,B). When A,B are SPD,
then κ(A,B) = κ(B−1A) where κ denotes the standard spectral condition number.

A principal goal of this paper is to propose the construction of a symmetric
diagonally dominant matrix K̄ that approximates the finite element stiffness matrixK
in the sense that κ(K, K̄) is not too large. The following two lemmas and subsequent
theorem define our framework for defining K̄ and bounding κ(K, K̄).

Lemma 2.1. Suppose V ∈ Rn×p, and suppose H ∈ Rp×p is SPD. Then

σ(V HV T , V V T ) ≤ λmax(H),

where λmax denotes the largest eigenvalue.
Proof.

σ(V HV T , V V T ) = sup
x∈Rn−N(V T )

xTV HV T x
xTV V T x

= sup
y∈R(V T )

yTHy
yT y

≤ λmax(H).

The second line follows from the first by substituting y = V T x and the third from the
Courant-Fischer minimax theorem [10, §8.1.1]. Here, R(V T ) denotes the range-space
of V T .
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Lemma 2.2. Suppose V ∈ Rn×p, and suppose H ∈ Rp×p is SPD. Then

σ(V V T , V HV T ) ≤ 1/λmin(H),

where λmin denotes the smallest eigenvalue.
Proof. Using the same idea in the previous proof leads to a supremum over the

Rayleigh quotient yT y/(yTHy), which is bounded above by 1/λmin(H).
Combining these two lemmas yields a result for the condition number.
Theorem 2.3. Suppose V ∈ Rn×p, and suppose H ∈ Rp×p is SPD. Then

κ(V HV T , V V T ) ≤ κ(H).

Proof. The result follows from Lemma 2.1 and 2.2 and by using the fact κ(H) =
λmax(H)/λmin(H) when H is SPD.

The way we will apply this theorem is to let V = AT D̄1/2, where A is the
node-arc incidence matrix of a graph and D̄ is a diagonal weight matrix. Then
K̄ = V V T = AT D̄A is diagonally dominant while K = V HV T = AT D̄1/2HD̄1/2A
is not (in general). Therefore, we now have a tool to approximate non-diagonally-
dominant matrices.

3. Finite element analysis. In this section we provide a brief summary of
isoparametric finite element approximation as well as an introduction to notation
that is crucial for our main theorem. The material in this section is standard [15] in
textbooks, except that our description herein uses notation for indexing that is more
detailed than usual. This section concludes with a summary of our notation.

The class of problems under consideration consists of finite-element discretizations
of the following second-order elliptic boundary value problem. Find u : Ω → R
satisfying

∇ · (θ∇u) = −f on Ω,
u = u0 on Γ1,

θ∂u/∂n = g on Γ2.
(3.1)

Here, Ω is a bounded open subset of Rd (typically d = 2 or d = 3), Γ1 and Γ2 form
a partition of ∂Ω, θ is a given scalar field on Ω that is positive-valued everywhere
and is sometimes called the conductivity, f : Ω → R is a given function called the
forcing function, u0 is a given function called the Dirichlet boundary condition and g
is another given function called the Neumann boundary condition.

This problem has applications to many problems in mathematical physics. For
example, u can represent voltage in a conducting medium, in which case θ stands for
electrical conductivity. The two types of boundary conditions stand for, respectively,
a boundary point held at fixed voltage or a boundary point electrically insulated (or
with prespecified nonzero current). Another application is thermodynamics, in which
u stands for temperature of the body, θ for thermal conductivity, Γ1 for a boundary
held at fixed temperature, and Γ2 for a boundary insulated (or with prespecified heat
flow). Problem (3.1) is also used to model membrane deflection and gravity. It arises
as a subproblem in fluid flow modeling.

For clarity, we keep track of our assumptions by explicitly numbering them. One
assumption has already been made:

Assumption 1. For all x ∈ Ω, θ(x) > 0.
3



Without this assumption, the problem may be ill posed.
The first step in the isoparametric finite element method is to produce a mesh of

this domain. For the remainder of the paper, we assume isoparametric elements are
defined with respect to the usual polynomial basis on a simplicial reference element,
although the results can be generalized to other reference elements and basis families.

In more detail, let T0 denote the standard unit d-simplex: for d = 2, this sim-
plex is the triangle with vertices (0, 0), (1, 0), (0, 1), and for d = 3 this simplex is
the tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1). Let p denote the
polynomial order of the finite element method. In the reference element, position
an evenly spaced array of l = (p + 1)(p + 2)/2 reference nodes when d = 2 or of
l = (p + 1)(p + 2)(p + 3)/6 nodes when d = 3. These nodes have coordinates of the
form (i/p, j/p) (in two dimensions) or (i/p, j/p, k/p) (in three dimensions) where i, j
(and, in three dimensions, k) are nonnegative integers whose sum is at most p. Let
these nodes be enumerated z1, . . . , zl.

One generates a mesh of Ω composed of m elements to be defined via mapping
functions. For each element t = 1, . . . ,m, there is a mapping function φt that maps
T0 to Rd. Let ∇φt denote the derivative (Jacobian) of φt. The following assumption
is nearly universal in the literature.

Assumption 2. Mapping function φt : T0 → Rd is one-to-one and onto, and
det(∇φt(z)) > 0 for all z ∈ T0, t = 1, . . . ,m.

The tth element is defined to be φt(T0) and hence has a shape of a curved
simplex. The function φt carries the l reference nodes z1, . . . , zl to l real-space
nodes φt(z1), . . . , φt(zl), which are often just called nodes. These may be denoted
ζt,1, . . . , ζt,l. The nodes are chosen so that the nodes on the boundary of the tth
element coincide with the corresponding nodes on the boundaries of its neighbors.

Restrict φt to be a polynomial of degree p, in which case it is uniquely determined
by the positions of its real-space nodes. In more detail, let Nµ, µ = 1, . . . , l, be a real-
valued degree-p polynomial function on T0 with the property that

Nµ(zν) =
{

1 if µ = ν,
0 if µ 6= ν

}
for all ν = 1, . . . , l. (3.2)

It is not hard to write down an explicit formula for Nµ and to prove that (3.2)
uniquely determines Nµ among degree-p polynomials. These functions N1, . . . , Nl are
called shape functions. For each t, φt necessarily has the formula φt = ζt,1N1 + · · ·+
ζt,lNl.

There are many duplicate entries in the list ζ1,1, . . . , ζm,l because of common
nodes at the boundaries of the elements. Let w1, . . . , wn′ be a listing of the real-space
nodes with all duplicates removed. This renumbering is specified by an index mapping
function, the local-to-global numbering map, denoted LG and carrying an index pair
(t, µ) to an index i ∈ 1, . . . , n′ so that wi ≡ ζt,µ.

Finally, the mesh T is specified by listing the nodes w1, . . . , wn′ and the local-
global mapping defined by LG. From this data, one can deduce all of the φt’s.

Let Ω̃ be the union of the elements, which may be slightly different from Ω. This
is because at the boundary of Ω, the elements may either protrude a bit outside Ω or
may fail to cover a small part of the boundary. Let the boundary of Ω̃ be partitioned
into Γ̃1 and Γ̃2 in correspondence with the partition Γ1,Γ2 of the boundary of Ω. It
is necessary to transfer θ (and several other fields) from Ω to Ω̃ and to transfer the
boundary conditions to Γ̃1 and Γ̃2. We omit the details.
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The next step in the isoparametric finite element method is to define basis func-
tions π1, . . . , πn′ , which are functions from Ω̃ to R satisfying

πi(wk) =
{

1 if i = k,
0 if i 6= k

}
for k = 1, . . . , n′. (3.3)

We require that πi, when restricted to an element t, must be of the form Nµ ◦
φ−1

t where LG(t, µ) = i or else must be identically 0 if i does not occur among
LG(t, 1), . . . , LG(t, l). This requirement uniquely determines the πi’s. It can be shown
that πi is continuous but fails to be differentiable at inter-element boundaries.

Let the global numbering be chosen so that w1, . . . , wn, the first n real-space
nodes, are the nodes with no Dirichlet boundary condition imposed, and let the
final n′ − n nodes have Dirichlet boundary conditions. Now we can define the exact
assembled stiffness matrix Kexact of the finite element method to be the n×n matrix
whose (i, j) entry is given by

Kexact(i, j) =
∫

Ω̃

∇πi(x) · θ(x)∇πj(x) dx (3.4)

where ∇ as usual denotes the gradient.
Matrix Kexact is sparse, symmetric and positive semidefinite. Symmetry is ob-

vious; semidefiniteness follows from a fairly straightforward argument that we omit,
and sparsity follows because Kexact(i, j) is nonzero only if there is an element t that
contains both nodes wi and wj .

Integral (3.4) is difficult to compute directly because evaluating πi requires eval-
uation of φ−1

t . Fortunately, this difficulty is avoided by breaking the integral into a
sum over elements then carrying out the integral over the reference domain following
a change of variables as follows.

Kexact(i, j) =
m∑

t=1

∫
T0

∇xπi(φt(z)) · θ(φt(z))∇xπj(φt(z)) det(∇φt(z)) dz, (3.5)

where the notation ∇x means derivative with respect to the coordinates of element t
(as opposed to derivative with respect to z, the coordinates of T0).

The integrand of (3.5) is evaluated using the chain rule for derivatives. Assume
wi is a node of element t (else the above integral is 0). Let µ be the index such that
LG(t, µ) = i, so that πi = Nµ ◦ φ−1

t on element t. Then

∇xπi(φt(z)) = ∇xNµ(z)
= ∇φt(z)−T · ∇zNµ(z), (3.6)

and similarly for πj . Here, ∇φt(z)−T denotes the transposed inverse of the d×dmatrix
∇φt(z), which exists by Assumption 2. The ‘·’ notation in the previous formula
indicates matrix-vector multiplication. Gradients are regarded as length-d column
vectors.

We assume that the entries of K are not the exact value of the integral (3.5)
but are obtained by a quadrature rule that we now discuss. Let r1, . . . , rq be points
in the interior of the reference element T0 called the Gauss points. (As is common
practice, we use this terminology even if the quadrature rule is not derived from
Gaussian quadrature.) Let ω1, . . . , ωq be corresponding Gauss weights. We denote
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this quadrature rule, i.e., the set of ordered pairs (r1, ω1), . . . , (rq, ωq), by the symbol
Q. Then in place of (3.5) we take

K(i, j) =
m∑

t=1

q∑
k=1

∇xπi(φt(rk)) · θ(φt(rk))∇xπj(φt(rk)) det(∇φt(rk))ωk, (3.7)

in which ∇xπi(φt(rk)) is evaluated by substituting z = rk into the right-hand side of
(3.6) and similarly for ∇xπj(φt(rk)). Symmetry and sparsity of K follow for the same
reason as for Kexact; positive semidefiniteness will follow from results in the next two
sections (under some additional assumptions to be made).

We close this section with a summary of the notation introduced thus far. Integers
that define the size of the computation are:

d = space dimension of (3.1),
p = polynomial order of the finite element method,

l = number of reference nodes =
{

(p+ 1)(p+ 2)/2 if d = 2,
(p+ 1)(p+ 2)(p+ 3)/6 if d = 3,

m = number of elements,
n = number of non-Dirichlet real-space nodes,
n′ = total number of real-space nodes,
q = number of Gauss points in the quadrature rule Q.

Sets of points in Rd include

z1, . . . , zl = reference nodes,
ζ1,1, . . . , ζm,l = real-space nodes (local numbering),
w1, . . . , wn′ = real-space nodes (global numbering).

The quadrature rule Q is defined by

r1, . . . , rq = Gauss points,
ω1, . . . , ωq = Gauss weights.

Important domains are:

T0 = the reference element,
Ω = the domain of (3.1),

φ1(T0), . . . , φm(T0) = the elements,
Ω̃ = the approximation to Ω given by φ1(T0) ∪ · · · ∪ φm(T0).

Important functions are:

φ1, . . . , φm = element mapping functions (T0 → Ω̃),
N1, . . . , Nl = shape functions (T0 → R),

θ = conductivity (Ω̃ → R),
LG = local-to-global index mapping {1, . . . ,m} × {1, . . . , l} → {1, . . . , n′},

π1, . . . , πn′ = basis functions (Ω̃ → R).
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Finally, scalar quantities to be introduced in the next section, but which are
included here for completeness, include

mQ,MQ = min and max quadrature weights,
θ̂(T ) = intra-element conductivity variation,

α1, . . . , αm = maximum compression in elements,
β1, . . . , βm = maximum stretch in elements,

κ1(T ), κ2(T ) = mesh quality measures,
σQ,p, τQ,p = max and min singular values of SQ,p.

4. Condition numbers and assumptions. Our main theorem about matrix
approximation, which is Theorem 5.1 below, depends on several scalars associated
with the finite element method and the problem at hand that we define in this section.
In addition, this section states further assumptions about the problem and method.

Two constants appearing in our bound are mQ and MQ, which we define to be
the minimum and maximum weights in the quadrature rule, i.e.,

mQ = min(ω1, . . . ωq); MQ = max(ω1, . . . , ωq). (4.1)

Assumption 3. The quadrature weights are positive, i.e., mQ > 0.
There is some loss of generality with this assumption because a few popular finite

element quadrature schemes (but certainly not all) use negative weights [8].
Assumption 4. The quadrature scheme is exact for polynomials of degree up to

2p− 2, i.e., if ψ : T0 → R is a polynomial of degree 2p− 2 or less in the d coordinates
of T0, then

q∑
k=1

ψ(rk)ωk =
∫

T0

ψ(z) dz.

This assumption is quite reasonable since it is usually required anyway for accurate
solution by finite element analysis: one wants accurate quadrature of ∇πi · ∇πj .

We now define a dq × (l − 1) matrix SQ,p according to the following formula:

SQ,p =

 ∇N2(r1) ∇N3(r1) · · · ∇Nl(r1)
...

...
∇N2(rq) ∇N3(rq) · · · ∇Nl(rq)

 . (4.2)

Although we introduce this matrix in this section in order to define two associated
scalars, the motivation for this definition will be postponed until Section 6. Before
defining these scalars, we require the following lemma.

Lemma 4.1. Under Assumption 4, matrix SQ,p has full column rank.
Proof. Let v ∈ Rl−1 be chosen so that SQ,pv = 0. Define the function U : T0 → R

according to the formula U = v1N2 +v2N3 + · · ·+vl−1Nl. Observe that, by definition
of SQ,p, the first d entries of SQ,pv are precisely ∇U(r1), and the next d entries
are ∇U(r2), etc. Therefore, ∇U vanishes identically at r1, . . . , rq. Let ψ : T0 → R
be defined by ψ = ∇U · ∇U . Then ψ has degree at most 2p − 2, is a nonnegative
function, and also vanishes identically at r1, . . . , rq. By Assumption 4, this means that∫

T0
ψ = 0. But since ψ is nonnegative-valued, we conclude that ψ ≡ 0. Therefore,

∇U ≡ 0 also, and thus U must be a constant function on T0. But the definition of
7



U omits the N1 term, and therefore U(z1) = 0. Since U is constant, this means that
U ≡ 0 on all of T0, and in particular, U(z2) = · · · = U(zl) = 0. But U(z2) = v1,
U(z3) = v2, . . . , U(zl) = vl−1 by construction of U . Therefore, the entries of v are
all zeros. Since v was an arbitrary vector in N(SQ,p), this argument proves that this
nullspace contains only the 0 vector, hence SQ,p has full column rank.

The next constants that appear in our theorem are σQ,p and τQ,p, defined as
follows:

σQ,p = σmax(SQ,p); τQ,p = σmin(SQ,p). (4.3)

These constants depend only on p and the quadrature scheme. It follows from the
lemma that both are positive.

The remaining scalars and assumptions in this section pertain to the mesh. Define
for t = 1, . . . ,m,

αt = max{‖∇φt(r1)−1‖, . . . , ‖∇φt(rq)−1‖}, (4.4)
βt = max{‖∇φt(r1)‖, . . . , ‖∇φt(rq)‖}. (4.5)

The norms in these equations are matrix 2-norms: ‖B‖ ≡ σmax(B). Finally, for the
whole mesh, a quality measure is

κ1(T ) = max
t=1,...,m

αtβt. (4.6)

Although the α’s and β’s are subscripted only by t, it is clear from the definition
that they also depend on Q. On the other hand, it is possible to get a Q-independent
definition of these by simply taking the upper bounds similar to (4.4), (4.5) over all
z ∈ T0 instead of just r1, . . . , rq. Unfortunately, for higher order elements (p > 1),
there is no simple method to compute maxz∈T0 ‖∇φt(z)−1‖; a technique for obtaining
an upper bound appears in [21].

It should be noted that κ1(T ) ≥ 1 since for any z, ‖∇φt(z)−1‖ · ‖∇φt(z)‖ ≥ 1. If
all the elements are well-shaped, i.e., not too distorted when compared to the reference
element, then κ1(T ) will not be much larger than 1.

The second mesh quality measure is

κ2(T ) = max
t=1,...,m

maxk=1,...,q det(∇φt(rk))
mink=1,...,q det(∇φt(rk))

. (4.7)

This quantity measures the maximum over elements of the variation in volumetric
distortion over the element. This may be regarded as a measure of how much elements
depart from linearity (flatness). Measure κ2 is not completely independent from κ1

as the following argument shows. It follows from Hadamard’s inequality that

α−d
t ≤ det(∇φt(rk)) ≤ βd

t

and therefore

maxk=1,...,q det(∇φt(rk))
mink=1,...,q det(∇φt(rk))

≤ (αtβt)d,

hence κ2(T ) ≤ κ1(T )d. This bound is not likely to be tight in practice (see our
computation results in Table 10.3), so we prefer to distinguish the roles of κ1 and κ2.
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The final two assumptions are qualitative in nature and are meant to indicate
cases in which our method is expected to work well.

Assumption 5. Mesh quality measures κ1(T ), κ2(T ) are not too large.
In the case of linear elements (p = 1), κ1(T ) is proportional to the reciprocal of

the minimum angle (in two dimensions) or solid angle (in three dimensions) of the
mesh and κ2(T ) ≡ 1.

Assumption 5 does not imply that the elements are of a uniform size: a uniform
rescaling of element t does not affect the product αtβt.

The final constant and assumption pertain to the conductivity field. Define

θ̂(T ) = max
t=1,...,m

maxk=1,...,q θ(φt(rk))
mink=1,...,q θ(φt(rk))

. (4.8)

In other words, θ̂(T ) measures the maximum intra-element variation of the conduc-
tivity field θ.

Assumption 6. Intra-element conductivity variation θ̂(T ) is not too large.
This assumption implies that if there are huge jumps in θ in the domain (e.g.,

because one is modeling a domain composed of two materials with vastly different
conductivities), then the mesh boundaries should be aligned with the conductivity
jumps. If the mesh boundaries are aligned with the conductivity jumps, then no
element will have large variation in θ among its Gauss points and thus θ̂(T ) will not
be large.

Note that, as in the case of κ1(T ) and κ2(T ), scalar θ̂(T ) also depends on the
quadrature rule, but this dependence can be eliminated by overestimating θ̂(T ) as

max
t=1,...,m

maxz∈T0 θ(φt(z))
minz∈T0 θ(φt(z))

.

5. The matrix approximation. Our main matrix factorization result is sum-
marized by the following theorem whose proof is explained in upcoming sections.

Theorem 5.1. Let K be defined by (3.7) above, and let Assumptions 1–4 hold.
Then K may be factored as ATJTDJA, where

• A is an (l−1)m×n reduced node-arc incidence matrix of a certain multigraph,
• J is a dqm× (l − 1)m matrix that is well conditioned in the sense that

σmax(J) ≤ σQ,p, (5.1)

and

σmin(J) ≥ τQ,p/κ1(T ). (5.2)

• D is a dqm× dqm positive definite diagonal matrix.
Further, JTDJ may be refactored as D̄1/2HD̄1/2 where D̄ is a (l − 1)m × (l − 1)m
SPD diagonal matrix and H is a (l − 1)m × (l − 1)m SPD matrix whose condition
number is bounded as follows:

κ(H) ≤ θ̂(T )κ1(T )2κ2(T ) ·
MQσ

2
Q,p

mQτ2
Q,p

. (5.3)

This theorem can now be combined with Theorem 2.3 to obtain a good approx-
imation K̄ to the stiffness matrix K. In particular, we take K̄ = AT D̄A. Note that
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this matrix, being a weighted graph laplacian, is symmetric and diagonally dominant.
Then in the context of Theorem 2.3, V = AT D̄1/2. The theorem thus implies that
the condition number of K̄ with respect to K depends only on the condition number
of H for which we have a good bound (5.3). Then K̄ can be preconditioned using
techniques in the previous literature. The complete description of the algorithm is
given below in Section 8.

The approximation bound clearly depends on the quadrature rule, mesh quality,
and intra-element variation of θ. It is also informative to make a list of quantities on
which κ(K̄,K) does not depend:

• The number of nodes or elements,
• The size of the elements,
• Variation in the size of elements (i.e., gradation of the mesh),
• The shape of Ω (except that if Ω has a sharp corner, then the mesh will

necessarily also have a sharp corner, which forces κ1(T ) to be large),
• The conductivity field θ (provided that the mesh respects internal boundaries

where large conductivity jumps occur).

6. The first factorization. In this section we develop the first factorization of
K stated in Theorem 5.1. This factorization is related to one proposed in [22]. We
state the main result of this section as a lemma.

Lemma 6.1. Matrix K defined by (3.7) can be factored as K = ATSTRTDRSA
where the factors are as follow.

• Define matrix A ∈ R(l−1)m×n to be a sparse matrix all of whose entries are
−1, 0 or 1. In more detail, A is written in block form

A =

 A1

...
Am

 ,

where At is (l−1)×n for each element t = 1, . . . ,m. The columns are indexed
1, . . . , n in correspondence with nodes w1, . . . , wn. Row µ−1 of At has a ‘1’ in
column LG(t, µ) for µ = 2, . . . , l and a ‘−1’ in column LG(t, 1). Thus, most
rows of A have exactly two nonzero entries. If LG(t, µ) > n (i.e., node ζt,µ
lies in the Dirichlet boundary Γ̃1), then the ‘1’ entry is omitted. Similarly, if
LG(t, 1) > n, then the ‘−1’ entry is omitted. For this reason, a few rows of
A have just one nonzero entry or none at all.

• Define S ∈ Rdqm×(l−1)m by

S =

 SQ,p

. . .
SQ,p


m times, (6.1)

where SQ,p was defined by (4.2).
• Define block diagonal R ∈ Rdqm×dqm by

R =

 R1

. . .
Rm

 , (6.2)

10



where each of R1, . . . , Rm ∈ Rqd×qd is itself block diagonal and given by

Rt = α−1
t

 ∇φt(r1)−T

. . .
∇φt(rq)−T

 . (6.3)

The scalar αt used here was defined by (4.4).
• Finally, D ∈ Rqdm×qdm is positive definite diagonal and given by

D =

 D1

. . .
Dm

 , (6.4)

where Dt ∈ Rqd×qd, t = 1, . . . ,m, is given by

Dt = α2
t

 θ(φt(r1)) det(∇φt(r1))ω1I
. . .

θ(φt(rq)) det(∇φt(rq))ωqI


(6.5)

in which I denotes the d× d identity matrix.
Remarks. Intuitively, this factorization of K decomposes finite element analysis into
natural ingredients: A encodes the combinatorial connectivity of the mesh, R encodes
the geometry of the mesh, S encodes the quadrature points, and D encodes the
quadrature weights and conductivity. The scaling factor αt, which is necessary for
our analysis, cancels out between Dt and Rt.

Note that the positive definiteness of D follows from Assumptions 1, 2, and 3.
Note also that A is a reduced node-arc incidence matrix of a multigraph defined on the
nodes of T . (Multigraph indicates that more than one edge may connect a particular
pair of vertices.) Each element gives rise to l− 1 arcs in the graph. In particular, for
each element t = 1, . . . ,m, there is an arc joining each of its nodes 2, . . . , l to node
1. Columns corresponding to nodes of Γ̃1 are omitted. (This is what is meant by
“reduced.”)

Proof. Let ξ be an arbitary vector in Rn, and let u : Ω̃ → R be defined by

u =
n∑

i=1

ξiπi.

For an element t, define function Ut : T0 → R by

Ut =
l∑

µ=1

ξLG(t,µ)Nµ. (6.6)

With these definitions, it is clear that u ◦ φt = Ut. In (6.6), we follow the convention
that ξi ≡ 0 in the case that i ∈ {n+ 1, . . . , n′}.

11



The assembled stiffness matrix is defined by (3.7) so that

ξTKξ =
n∑

i=1

n∑
j=1

ξiξjK(i, j)

=
n∑

i=1

n∑
j=1

ξiξj

m∑
t=1

q∑
k=1

∇xπi(φt(rk)) · θ(φt(rk))∇xπj(φt(rk)) det(∇φt(rk))ωk

=
m∑

t=1

q∑
k=1

n∑
i=1

ξi∇xπi(φt(rk)) · θ(φt(rk))
n∑

j=1

ξj∇xπj(φt(rk)) det(∇φt(rk))ωk

=
m∑

t=1

q∑
k=1

∇xu(φt(rk)) · θ(φt(rk))∇xu(φt(rk)) det(∇φt(rk))ωk

=
m∑

t=1

q∑
k=1

∇xUt(rk) · θ(φt(rk))∇xUt(rk) det(∇φt(rk))ωk

=
m∑

t=1

q∑
i=1

(∇φt(rk)−T∇zUt(rk)) · θ(φt(rk))

(∇φt(rk)−T∇zUt(rk)) det(∇φt(rk))ωk (6.7)
= vTDv. (6.8)

In (6.8), we have used the matrix D defined by (6.4). We have also introduced the
vector v ∈ Rdqm defined in block fashion as follows. Write v = [v1; · · · ; vm] where
vt ∈ Rdq is itself composed of blocks vt = [vt,1; · · · ; vt,q]. Here vt,k ∈ Rd is defined to
be

vt,k = (∇φt(rk))−T∇zUt(rk)/αt. (6.9)

It is clear by construction of D and v that vTDv is equal to the expression in (6.7).
Next, we claim that v = RSAξ. Focus on the block corresponding to a particular

element t ∈ {1, . . . ,m} in which case we must show that vt = RtSQ,pAtξ. The product
Atξ yields a vector with (l − 1) entries that contains finite differences of entries of ξ.
Specifically, the µ− 1 entry is ξLG(t,µ) − ξLG(t,1) for µ = 2, . . . , l.

By definition of SQ,p in (4.2), it follows that the k-block of entries (k = 1, . . . , q)
of SQ,pAtξ is the d-vector ∇zŪt(rk), where

Ūt = (ξLG(t,2) − ξLG(t,1))N2 + · · ·+ (ξLG(t,l) − ξLG(t,1))Nl.

Comparing this equation to (6.6) indicates that Ūt and Ut differ by

ξLG(t,1)(N1 + · · ·+Nl).

This latter quantity, however, is a constant function (becauseN1+· · ·+Nl is identically
1, a property that follows from (3.2) and the fact that 1 is a polynomial of degree at
most p and hence must be expressable as a sum of Nµ’s). Therefore, Ut and Ūt have
the same gradient. We conclude that the k block of SQ,pAtξ must equal ∇zUt(rk).

Combining this equation with (6.3) shows that

RtSQ,pAtξ = (∇φt(rk))−T∇zUt(rk)/αt,

and hence is equal to vt,k as defined by (6.9). This concludes the proof that v = RSAξ.
12



Since vTDv = ξTKξ, this means ξTATSTRTDRSAξ = ξTKξ. Since this holds
for all ξ ∈ Rn, and since a symmetric matrix C is uniquely determined by the mapping
ξ 7→ ξTCξ, this means that K = ATSTRTDRSA, which concludes the proof of the
lemma.

Now we analyze the singular values of J to finish the first part of Theorem 5.1.
Let us define J = RS so that K = ATJTDJA as claimed. The block structures of R
and S induce a corresponding block structure on J :

J =

 J1

. . .
Jm


where

Jt = RtSQ,p (6.10)

for all t = 1, . . . ,m. Because of this structure, the maximum singular value of J is
the maximum singular value among any of its blocks and similarly for its minimum
singular value. Since in general σmax(AB) ≤ σmax(A)σmax(B),

σmax(Jt) ≤ σmax(Rt)σmax(SQ,p)
= σmax(diag(∇φt(r1)−T , . . . ,∇φt(rq)−T ))σQ,p/αt

= max
k=1,...,q

σmax(∇φt(rk)−1)σQ,p/αt

= σQ,p. (6.11)

The last line follows from (4.4) and establishes (5.1).
Since σmin(AB) ≥ σmin(A)σmin(B) for two matrices A,B with full column rank,

σmin(Jt) ≥ σmin(Rt)σmin(SQ,p)
= σmin(diag(∇φt(r1)−T , . . . ,∇φt(rq)−T ))τQ,p/αt

= min
k=1,...,q

σmin(∇φt(rk)−1)τQ,p/αt

= min
k=1,...,q

(1/σmax(∇φt(rk)))τQ,p/αt

= (1/βt) · τQ,p/αt

≥ τQ,p/κ1(T ). (6.12)

For the last line, we used the fact that αtβt ≤ κ1(T ), which follows from (4.6). This
establishes (5.2) and concludes the proof of the first factorization in Theorem 5.1.

Our factorization K = ATJTDJA is reminiscent of one proposed by Argyris [1]
of the form K = ÃP ÃT , which he calls the “natural factorization.” In Argyris’s
factorization, however, the matrix Ã has all +1 and 0 entries and therefore is not
a node-arc incidence matrix. The purpose of Argyris’s matrix Ã is to assemble the
element stiffness matrices, which constitute the blocks of the block-diagonal matrix
P .

7. The second factorization. In this section we prove the second part of The-
orem 5.1. We state the existence of the second factorization in the form of a lemma.

Lemma 7.1. Let J and D be defined as in Lemma 6.1. Then JTDJ can be
refactored as D̄1/2J̄T J̄D̄1/2, where

13



• Matrix D̄ ∈ Rm(l−1)×m(l−1) is positive definite diagonal and is written in
block form

D̄ = mQ

 f1g1α
2
1I

. . .
fmgmα

2
mI

 (7.1)

where I is the (l − 1) × (l − 1) identity matrix. In this formula, ft is the
minimum value of θ over Gauss points of element t:

ft = min
k=1,...,q

θ(φt(rk)), (7.2)

and similarly, gt is the minimum value of det(∇φt):

gt = min
k=1,...,q

det(∇φt(rk)). (7.3)

• Matrix J̄ ∈ Rdqm×(l−1)m is defined by

J̄ = D1/2JD̄−1/2. (7.4)

Proof. The fact that D̄1/2J̄T J̄D̄1/2 = JTDJ follows as an immediate consequence
of (7.4) regardless of how we have defined D̄.

Next we analyze the condition number of H to finish proving the second part of
Theorem 5.1. We define H = J̄T J̄ so that JTDJ = D̄1/2HD̄1/2. We must estimate
the singular values of J̄ , which are the square roots of the eigenvalues of H.

Let the diagonal block of J̄ associated with element t be denoted J̄t for t =
1, . . . ,m. Because of the block structure, the maximum and minimum singular values
for J̄ are the maximum and minimum singular values among the blocks J̄t which may
be written

J̄t = D
1/2
t Jtf

−1/2
t g

−1/2
t m

−1/2
Q α−1

t

= D̂tJt

where

D̂t = f
−1/2
t g

−1/2
t m

−1/2
Q α−1

t D
1/2
t .

Examining the constituent parts of Dt given by (6.5), observing that the α2
t in (6.5)

is cancelled by the α−1
t in the preceding equation and applying the inequalities

1 ≤ ωk/mQ ≤MQ/mQ

for k = 1, . . . , q (see (4.1)),

1 ≤ θ(φt(rk))f−1
t ≤ maxk=1,...,q θ(φt(rk))

mink=1,...,q θ(φt(rk))

(see (7.2)), and

1 ≤ det(∇φt(rk))g−1
t ≤ maxk=1,...,q det(∇φt(rk))

mink=1,...,q det(∇φt(rk))
14



(see (7.3)), we conclude that the diagonal entries of D̂t satisfy

1 ≤ D̂t(i, i) ≤
(

maxk θ(φt(rk))
mink θ(φt(rk))

)1/2 (
maxk det(∇φt(rk))
mink det(∇φt(rk))

)1/2 (
MQ

mQ

)1/2

.

By (4.7) and (4.8), the first two quantities on the right-hand side of the preceding
equation are bounded by θ̂(T )1/2 and κ2(T )1/2 respectively. Thus, it is apparent that
for each i,

1 ≤ Dt(i, i) ≤ (θ̂(T )κ2(T )MQ/mQ)1/2.

Since J̄t = D̂tJt, we can combine the inequalities in the previous line with (6.11) and
(6.12) to obtain:

σmax(J̄t) ≤ θ̂(T )1/2κ2(T )1/2M
1/2
Q σQ,p/m

1/2
Q , (7.5)

and

σmin(J̄t) ≥ τQ,p/κ1(T ). (7.6)

Since H = J̄T J̄ and J̄ has full column rank, (7.5) and (7.6) prove (5.3), which
concludes the proof of Theorem 5.1.

8. Preconditioning Strategy Summary. The main result of this paper is
that the stiffness matrix K of (3.1) can be approximated by a symmetric diagonally
dominant matrix K̄. In this section we discuss several approaches for using this
approximation to efficiently solve the linear system Kx = f by iteration.

The first step in using the approximation to construct K̄. Recall that K̄ = AT D̄A,
and thus A and D̄ must be formed. Forming A means construction of the multigraph
consisting of l− 1 edges (a star-tree) per element of T . Matrix A is then the reduced
node-arc incidence matrix of this multigraph as specified by Lemma 6.1. Construction
of D̄ is given by (7.1). Notice that computing A and D̄ requires information about
the mesh and original boundary value problem. In other words, our method is not
applicable (at least not in a straightforward manner) if the only information about
the original problem is the stiffness matrix K.

Once K̄ is on hand, there are several ways to proceed. The most straightforward
is to suppose that one has an efficient preconditioned conjugate gradient solver for
systems of the form K̄x = f . Efficient preconditioners for symmetric diagonally dom-
inant systems were proposed and analyzed in a graph-theoretic framework by Vaidya.
Vaidya’s work is described and extended by [4, 6], and [11] contains a related analysis.
One of the most recent improvements is due to Spielman and Teng [20], who propose
a graph-based preconditioner whose running time is O(n5/4). (Spielman and Teng
improve this bound to O(n1+ε) for any ε > 0, but the algorithm corresponding to
the improved bound is no longer preconditioned conjugate gradients.) Other tech-
niques proposed in the literature for symmetric diagonally dominant matrices such as
algebraic multigrid could also be used.

If one has a good preconditioner M for K̄, then one could also use M as a
preconditioner directly for K. This is because of the “triangle inequality” (see [5]),
which states

σ(K,M) ≤ σ(K, K̄)σ(K̄,M). (8.1)
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This shows that the the overall support number is bounded by the product of the
support numbers in each step of the approximation K ≈ K̄ ≈ M . In particular.
κ(M,K) ≤ κ(H)κ(M, K̄). Since the number of iterations of preconditioned conjugate
gradients is bounded by the square root of the condition number, our analysis shows
that the increase in the number of iterations for solving Kx = f (compared to solving
K̄x = f) is at most a factor of

√
κ(H), which in turn is bounded by

θ̂(T )1/2κ1(T )κ2(T )1/2MQσQ,p/(mQτQ,p).

The asymptotically fastest known iterative algorithm for solving symmetric diag-
onally dominant matrices is due to Elkin et al. [9]. This algorithm, which we denote
EEST, extends Spielman and Teng [20] and requires O(ne(log n)s) time to solve any
diagonally dominant K̄x = f , where ne is the number of nonzero entries in K̄ and s is
some constant. In our case, ne = O(n). The EEST iteration is more complicated than
preconditioned conjugate gradients, and hence it is unclear whether it is possible to
simply replace the diagonally dominant coefficient matrix K̄ by our stiffness matrix
K and expect the algorithm to converge in O(n(log n)sκ(H)1/2) time.

On the other hand, one could obtain this running time O(n(log n)sκ(H)1/2) by
using a nested iteration: the outer iteration is preconditioned conjugate gradients
in which K̄ preconditions K. Thus, O(κ(H)1/2) outer iterations are required. The
inner loop is the EEST algorithm to apply the preconditioner, i.e., to solve K̄x = f
in O(n(log n)s) iterations. The EEST algorithm is fairly complex, and using it in
a two-level manner would raise a number of difficulties associated with termination
tests, so it is unlikely to be practical currently.

This bound of O(n(log n)sκ(H)1/2) on the number of operations is independent of
the condition number of the underlying system because, as noted above κ(H) depends
on factors associated with the finite element method and on mesh quality measures
but not on the conditioning of K.

Our approximation scheme can be rewritten on an element-by-element basis as
follows. For some element index t ∈ {1, . . . ,m}, consider its element stiffness matrix
Kt = AT

t J
T
t DtJtAt, where At is defined in Lemma 6.1, Jt is defined by (6.10), and

Dt is defined by (6.5). The above proof shows that D̄t, which is the tth block of
(7.1), is a good approximation to JT

t DtJt. Thus, we let K̄t = AT
t D̄tAt. The overall

approximation is K̄ =
∑m

t=1 K̄i. Note that the so-called splitting lemma frequently
used in support-graph theory (see, e.g., [5]) shows that

σ(K, K̄) ≤ max(σ(K1, K̄1), . . . , σ(Km, K̄m)),

so it suffices to analyze the quality of approximation of K̄t to Kt.
Alternatively, we can take a global view as in the above analysis and write K̄ =

AT D̄A, where A = (A1;A2; . . . ;Am) and D̄ = diag(D̄1, D̄2, . . . , D̄m). To simplify
notation, we have adopted the global view in this paper, but the reader should keep
in mind that our approximation can take place element by element, which may be
important in an implementation.

9. Notes added in revision. Since the first version of this paper, there have
been three related developments of interest. First, R. Gupta’s Master’s thesis [12] gave
a geometric method to approximate element stiffness matrices by diagonally dominant
matrices in the p = 1, d = 2 case. Gupta’s construction bears some similarity to
ours, although a bound like (5.3) is not obtained. Computational experiments are
performed.
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Table 10.1
Quadrature rules used for the six test cases. The rules are written in the form

(r1, ω1), . . . , (rq , ωq), where rk is a Gauss point in the reference simplex and ωk is its weight. In

this table ξ1 = (10−
√

20)/40 and ξ2 = 1− 3ξ1.

Test Q
T1 ((1/3, 1/3), 1/2)
T2 ((1/6, 1/6), 1/6), ((1/6, 2/3), 1/6), ((2/3, 1/6), 1/6)
T3,T5 ((1/4, 1/4, 1/4), 1/6)
T4,T6 ((ξ1, ξ1, ξ1), 1/24), ((ξ1, ξ1, ξ2), 1/24), ((ξ1, ξ2, ξ1), 1/24), ((ξ2, ξ1, ξ1), 1/24)

Table 10.2
Scalars relevant for test cases

Test d p q σQ,p τQ,p MQ/mq

T1 2 1 1 1.00 1.00 1.0
T2 2 2 3 5.26 0.83 1.0

T3,T5 3 1 1 1.00 1.00 1.0
T4,T6 3 2 4 6.47 0.63 1.0

Second, Phillips and Miller [18] have shown that in the p = 1, d = 2 case, κ(H)
is still small even if some elements have very small angles, provided that no element
has large angles (close to π). In our preceding analysis, the right-hand side of (5.3)
would grow large in the presence of small angles since the factor κ1(T ) would be large.
Their result probably can be extended to the p ≥ 2 case.

In a third development, Avron et al. [2] have shown how to get an approximation
to element stiffness matrices that is optimal up to a constant factor. In other words,
for an element stiffness matrix Kt they find a diagonally dominant matrix K̃t such
κ(Kt, K̃t) ≤ c1κ(Kt,K

′
t), where K ′

t is any other symmetric diagonally dominant ma-
trix of the correct size and c1 depends only on p, d. Thus, their preconditioner could
lead to a faster algorithm than ours since ours is not optimal in this sense. Their
theory, however, does not subsume ours since they do not obtain any new bounds on
κ(K, K̃) comparable to (5.3).

10. Computational tests. There are at least two possible ways to test the
effectiveness of our result: calculate the quality of matrix approximation or measure
the speed of an iterative method. Since our theory is primarily about the former issue,
and since Avron et al. conduct extensive testing on the latter question, we focus on
the first question.

We try out four specific commonly occurring cases: (d, p) = (2, 1), (2, 2), (3, 1), (3, 2),
i.e., linear and quadratic triangles and linear and quadratic tetrahedra. Six test
meshes were tried, which we denote T1, . . . ,T6; the first two are two-dimensional and
the last four are three-dimensional. For quadrature in the p = 1 cases, we use the
midpoint rule. For the p = 2 cases, we use the symmetric d + 1-point rule, which is
accurate for polynomials up to degree 2. Table 10.1 gives the quadrature rules used.

Table 10.2 gives the values of relevant scalars for these test cases. It should be
noted that σQ,p = τQ,p = 1 for the p = 1 cases under the midpoint rule because in
these cases SQ,p given by (4.2) turns out to be the identity matrix.

Finally, we can tabulate element stiffness approximation bounds. (As mentioned
in Section 8, it suffices to measure element stiffness approximation, which is much
easier to compute than global stiffness approximation.) There are at least three rele-
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Table 10.3
Approximation of the element stiffness matrix by a diagonally dominant matrix.

Test m n κ1(T ) κ2(T ) χ1 χ2 χ3

T1 234 143 4.1 1.0 16.6 16.6 16.6
T2 234 520 4.7 1.3 185.1 185.1 1117.2
T3 9078 1913 59.6 1.0 3549.5 3549.5 3549.5
T4 9078 13608 90.2 2.7 5.96 · 104 5.96 · 104 2.32 · 106

T5 729 220 5.0 1.0 24.9 24.9 24.9
T6 729 1330 5.0 1.2 396.6 396.6 2644.5

vant quantities to tabulate: χ1 = κ(Kt, K̄t), χ2 = κ(H), and χ3 = θ̂(T )κ1(T )2κ2(T ) ·
MQσ2

Q,p

mQτ2
Q,p

, which is the right-hand side of (5.3). Here, Kt is the stiffness matrix of

element t (t = 1, . . . ,m), and K̄t is the diagonally dominant preconditioner given by
AT

t D̄tAt. It follows from Theorem 2.3 and (5.3) that χ1 ≤ χ2 ≤ χ3.
We generate six meshes and take the max of χ1, χ2, χ3 over all elements of the

mesh. For conductivity, we use θ ≡ 1, so that the factor θ̂(T ) does not enter the
bound. The meshes are generated as follows. In two dimensions, we use the Triangle
mesh generator [19] to generate a mesh of an annulus, which is T1 and consists of
linear (p = 1) elements. To generate T2, a quadratic mesh, we insert midpoint nodes
in every element of T1, and for the edges on the boundaries, we moved the midpoint
nodes onto the boundary.

The remaining four meshes are three-dimensional. For T3, we used the QMG
mesh generator [17] to generate a mesh of a unit ball in R3. QMG’s meshes are
intended for the p = 1 case. For T4 we use midpoint insertion on the T3 mesh to
obtain a p = 2 mesh. Again, midpoint nodes of edges whose endpoints were on the
boundary were displaced outward onto the boundary. For T5 and T6, we again mesh
a unit ball (actually, one octant of the ball) using a mesh generator tailored for that
domain only. The mesh generator for T5 first generates a highly regular mesh of a
unit tetrahedron, and then it projects the mesh nodes radially outward toward one
facet so that an octant of the unit ball is covered. Finally, T6 is obtained from T5

using midpoint insertion and displacement at the boundary.
Then for every element in each mesh, we compute the three quantities χ1, χ2, χ3.

We have tabulated the maximum values in Table 10.3. The undesirably large values
of χ1 for T3 and T4 appears to be due primarily to poorly shaped elements, i.e., large
value of κ1(T ). This is evident from comparing T3 and T4 against T5 and T6, two
meshes for the same domain but with much better shaped tetrahedra.

The value of κ2(T ) was quite small in all tests; as mentioned earlier, it is iden-
tically 1 for the p = 1 cases. For the p = 2 cases, interior elements are still linear,
and elements adjacent to the boundary are fairly close to linear. It is interesting to
note that χ1 = χ2 in all cases. This implies that the invariant subspaces of H corre-
sponding to its extremal eigenvalues meet the range space of D̄1/2A. We do not have
a deeper explanation for this observation.

Although an iterative method was not tested, some conclusions can still be drawn
from Table 10.3. For example, if our approximation were used on T6 in an iterative
setting, then the slowdown would be at most a factor of

√
κ(K̄t,Kt), i.e., a slowdown

of at most a factor of 20. In practice, the method seems to work better than that
according to Avron et al.
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11. Open questions. This work is the first to extend support-tree methods,
which previously have been shown to be good preconditioners for diagonally dominant
matrices with negative off-diagonal entries, to the class of finite element matrices. We
have shown that the scope of the method includes a standard scalar elliptic boundary
value problem, but perhaps the scope of finite element problems that can be tackled
with this method could be expanded further.

One generalization would be the class of problems∇·(Θ(x)∇u) = −f , where Θ(x)
is a spatially varying d × d symmetric positive definite matrix. This generalization
would present problems for our current analysis in the case that Θ(x) is highly ill-
conditioned. It would still be straightforward to write K = ATJTDJA where D is
now block diagonal, but our analysis of the introduction of J̄ would run into trouble
because the dq× dq diagonal blocks of D are no longer individually well conditioned.

It would also be interesting to tackle vector problems such as linear elasticity or
Stokes’ flow, or higher-order equations like the biharmonic equation. It seems likely
that our techniques can extend to at least some of these problems since they all have a
symmetric positive definite weak form. On the other hand, a recent result [7] suggests
that the extension of our results to linear elasticity will not be straightforward because
of the higher nullity of element stiffness matrices in the case of linear elasticity. A fur-
ther generalization would be to unsymmetric problems like the convection-diffusion
equation. The latter class of problems would require substantial rethinking of the
whole approach since condition number reduction, which is very relevant for the ap-
plication of conjugate gradients to symmetric positive definite systems, is less relevant
to the application of GMRES to unsymmetric systems.

Our analysis is based on condition numbers (support numbers). One drawback
of this approach is that the convergence and work estimates may be too pessimistic.
For instance, the condition number of the preconditioned linear systems depends
on κ1(T ), the worst aspect ratio of any element in the mesh. If there is only one
poorly shaped element in the mesh, we expect iterative solvers will only take a few
extra iterations since changing a single element implies a low-rank correction to the
assembled stiffness matrix. Any analysis based on condition numbers will be unable
to capture this effect. A related open issue is whether we can exploit recent work in
mesh quality metrics [16] to show that “good meshes” both have small error in the
FEM approximation and also produce linear systems that can be well approximated
by diagonally dominant systems.

Another point to make about our method is that, although the condition number
of the preconditioned system has an upper bound independent of

Rθ = max
x∈Ω

θ(x)/min
x∈Ω

θ(x),

there will still be a loss of significant digits due to roundoff error when using our
method in the case that Rθ is large. This is because the system matrix and the
preconditioner separately are ill-conditioned operators. A special case of (3.1) in
which Rθ is extremely large and in which f = 0 was considered in [22]. That paper
proposed a method based on Gaussian elimination in which the loss of significant
digits is avoided. Some of the ideas behind [22] were also extended to solution via
conjugate gradient using support preconditioners by [14]. The methodology in [14],
however, was for node-arc incidence matrices and for a particular kind of support
preconditioner called a support tree [11], and it is not clear whether that method
would apply to the present setting.
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[21] S. Vavasis. A Bernstein-Bézier sufficient condition for invertibility of polynomial mappings.
Archived by http://arxiv.org/abs/cs.NA/0308021, 2003.

[22] S. A. Vavasis. Stable finite elements for problems with wild coefficients. SIAM J. Numer.
Anal., 33:890–916, 1996.

20


